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1 Points and Vectors

1.1 Definitions

Definition 1.1 We denote n-dimensional Euclidean space by

Rn =

n times︷ ︸︸ ︷
R× · · · × R

= {(x1, . . . , xn) | xi is a real number}
(1.1)

We will typically use capital letters P for the elements of Rn, the n-tuples (x1, . . . , xn),
when thought of as points, in the sense of positional location,

P = (x1, . . . , xn) (1.2)

We may also think of the elements of Rn as vectors, however, for example when
working with things like velocities/forces/etc. (‘vector quantities’, typically residing
in phase space rather than configuration space, in physics lingo). There is a certain
notation which is found in both physics and math books, that emphasises the vector
part of the elements of Rn, and it is the boldface or arrow, and angle-bracket notations
for the n-tuples:

x or ~x = 〈x1, . . . , xn〉 (1.3)

Add to this another notation for the n-tuples, needed for our own linear-algebraic
purposes in this course: the column vector notation,

x =

x1...
xn

 (1.4)

Example 1.2 Our two main examples are the Euclidean plane R2 and Euclidean
three-dimensional space R3. We usually denote x1 by x, x2 by y, and x3 by z, so that
P = (x, y) or (x, y, z), as the case may be. �
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We visualize points and vectors differently. For example, in R2 the point P = (−1, 3)
is pictured as a dot, and the vector x = 〈−1, 3〉 is pictured as an arrow from the origin
to P :

P = (−1, 3)

x = 〈−1, 3〉

x

y

1.2 Algebraic Properties of Vectors

The essential difference between points and vectors, mathematically, is that points
don’t possess any algebraic properties, whereas vectors do. The key algebraic prop-
erties of vectors are addition, scalar multiplication, and the dot and cross products:

• We can add two vectors.

• We can scale any vector (multiply it by a real number).

• Rules (1) and (2) are subject to certain rules (associativity, commutativity
and distributivity rules). It’s not so much that the rules make vectors ‘nice’
to work with, in the sense of a happy coincidence. The rules define the
‘niceness’ into the structure. The rules determine how all this works, and
in the process give vectors a certain symbolic elegance with which to decorate
their geometric import.

• We can ‘multiply’ two vectors in various different ways. The most well-known
and useful product is the dot product or scalar product of two vectors, which
results in a real number. This is a product we’ll study in greater depth in this
course.

• The cross product of two vectors results, not in a real number, but in another
vector. This product, so promising at first, runs into the difficulty of not gen-
eralizing well to higher dimensions, working only in R2 and R3. It took some
work, but Grassmann figured out how to get around this, by switching to the
wedge product (see next bullet point).

• There are yet other products, such as the tensor product, the wedge product
and the Clifford product, to name a few. They are studied in geometric
algebra and multilinear algebra. If we have time towards the end of the
semester we’ll talk about some of these, too.

We’ll begin with the definition of addition.
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1.2.1 Vector Addition

Definition 1.3 We define addition of vectors in Rn componentwise,

x + y = 〈x1, x2, . . . , xn〉+ 〈y1, y2, . . . , yn〉
= 〈(x1 + y1), (x2 + y2), . . . , (xn + yn)〉

(1.5)

This is more easily seen in terms of columns:

x + y =


x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 (1.6)

�

Example 1.4 Let us see what this means in R2. Take, say, x = 〈1, 2〉 and y =
〈−2, 1〉. Then x + y = 〈1− 2, 2 + 1〉 = 〈−1, 3〉.

x

y

x + y

x

y

Thus we see that to reach x + y, we may first go to x, then go in the direction of y
to get to x + y, or else we may to to y first and then go in the direction of x. This
shows geometrically the algebraic rule called commutativity, x + y = y + x. �

Let us now observe some direct consequence of our definition, which evidently is just
componentwise application of addition in R. All the rules for real numbers apply
here, where we have n-tuples of real numbers, since what we are doing now is just
carrying out n applications of the same operation at the same time.

Remark 1.5 Don’t be phased by the obviousness of these statements, because their
obviousness isn’t the point: their obviousness is emphasized here for later purposes.
We’ll take these properties, so obvious in Rn, and use them as the defining charac-
teristics of a new generalization, the abstract concept of a vector space V , in which
things will have the same algebraic behavior as vectors in Rn. This will cast a wider
net, and capture also real polynomials R[x], as well as many function spaces, for ex-
ample the space of continuous functions C(R), or smooth functions C∞(R), etc., in
their vector space guise. The space of m×n matrices, Mm,n(R), too, will turn out to
satisfy these rules, making it a vector space. �
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Theorem 1.6 (Properties of Vector Addition) For all vectors x,y, z ∈ Rn, we
have

(1) x + y = y + x (commutativity of addition)

(2) (x + y) + z = x + (y + z) (associativity of addition)

(3) The zero vector in Rn 0 = 〈0, . . . , 0〉 is characterized by 0 + x = x + 0 = x

for all x ∈ Rn.

(4) Every x ∈ Rn has a negative or additive inverse −x = 〈−x1, . . . ,−xn〉
which is characterized by (−x) + x = x + (−x) = 0

Proof : We’ll prove (1), and leave the others as (slightly tedious) exercises. Let
x = 〈x1, . . . , xn〉,y = 〈y1, . . . , yn〉 ∈ Rn and follow along:

x + y = 〈x1, . . . , xn〉+ 〈y1, . . . , yn〉 (1.7)

= 〈x1 + y1, . . . , xn + yn〉 (our new definition of +)

= 〈y1 + x1, . . . , yn + xn〉 (commutativity is true in R, componentwise)

= y + x

which proves (1). �

Now follows a typical math move. Define subtraction to be the addition of negatives.

Definition 1.7 The subtraction of vectors in Rn is now elegantly defined to be
addition of negatives:

x− y := x + (−y) �

Geometrically, the negative −x of a vector is the reflection of x through the origin:

x = 〈−1, 3〉

−x = 〈1,−3〉

x

y
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Remark 1.8 For those of you of a more mathematical bent, we note that, the way
we’ve defined things, Rn is an abelian group under addition, +. Actually, if
you go down the math rabbit hole far enough you begin to combine algebra with
calculus/analysis and topology/geometry in order to create all manner of conceptual
chimeras. But the biggest one of these is the general Lie group, which is a group with
extra topological and smooth structure. You need look no further than (Rn,+) to see
one, but the group of all invertible matrices, the general linear group GL(n,R),
provides us with another, and in fact with a whole slew of them: all of its subgroups.
Hopefully we’ll get to some of this highly interesting material towards the end of the
course! �

1.2.2 Scalar Multiplication

Definition 1.9 We define scalar multiplication of vectors in Rn, by which we
mean multiplication of a vector x ∈ Rn by a real number a ∈ R, componentwise:

ax = a〈x1, . . . , xn〉 := 〈ax1, . . . , axn〉 or ax = a

x1...
xn

 :=

ax1...
axn

 �

The geometric content of scalar multiplication may be seen in the following example:

Example 1.10 Take, say, the vector x = 〈1, 2〉 and the real number a = 2. Then,
algebraically,

ax = 2〈1, 2〉 = 〈2 · 1, 2 · 2〉 = 〈2, 4〉
which, geometrically means this:

x = 〈1, 2〉

x

y 2x = 〈2, 4〉

x

y

Thus geometrically scalar multiplication has the effect of scaling the length of the
vector x. �

Immediate properties of scalar multiplication are the following obvious ones, which I
leave to you as an exercise to prove.
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Theorem 1.11 (Properties of Scalar Multiplication) For all a, b ∈ R and all
x,y ∈ Rn, we have

(1) a(bx) = (ab)x (associativity of scalar mult.)

(2) (a+ b)x = ax + bx (distributivity over R-addition)

(3) a(x + y) = ax + ay (distributivity over Rn-addition)

(4) 1x = x. �

For reasons that must remain obscure for now (having to do with the notion of group
actions), we include condition (4) in the immediate foreground (in the theorem above),
and keep the next condition separate, not so much because it is a logical consequence
of the previous theorem, since indeed we can prove it directly from the definition, but
because we must keep an eye on our future goal: the abstract vector space. In that
case, we won’t have 0x defined directly, but will derive its meaning from the above
conditions, which will be taken for the definition of scalar multiplication.

Corollary 1.12 For all x ∈ Rn, we have 0x = 0.

Proof : Suppose x ∈ Rn. If we scale by 0 ∈ R, we get, straight from our definition,

0x = 0〈x1, . . . , xn〉 = 〈0x1, . . . , 0xn〉 = 〈0, . . . , 0〉 = 0

since 0xi = 0 for all i. �

Remark 1.13 Note, for future purposes, that we could have proved this differently,
using only the conditions of the previous theorems: Since the zero vector satisfies
0 + x = x for all x, and since scalar multiplication is distributive, we get

0 + 0x = 0x = (0 + 0)x = 0x + 0x

so that, subtracting 0x from both sides gives 0 = 0x. This makes no use of the
particular way we defined scalar multiplication, it just makes use of its abstract
properties (and those of addition). �
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1.2.3 Standard Coordinate Vectors

We can use addition and scalar multiplicaton of vectors to decompose a given vector
x = 〈x1, . . . , xn〉 into its components xi, as follows:

x =


x1
x2
x3
...
xn

 =


x1
0
0
...
0

+


0
x2
0
...
0

+ · · ·+


0
0
...
0
xn

 (1.8)

= x1


1
0
0
...
0

+ x2


0
1
0
...
0

+ · · ·+ xn


0
0
...
0
1


This calls for a definition:

Definition 1.14 Define the standard (Cartesian coordinate) basis vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
...
0
1


That is, ei = 〈0, . . . , 1, . . . , 0〉 with the 1 in the ith slot and 0’s everywhere else. �

With this in hand, we can nicely rewrite equation (1.8) as

x = 〈x1, . . . , xn〉 = x1e1 + x2e2 + · · ·+ xnen (1.9)

Example 1.15 When n = 2, we have special notation, which is more commonly
found in physics texts:

e1 = i = 〈1, 0〉
e2 = j = 〈0, 1〉

(1.10)

When n = 3, we also write:

e1 = i = 〈1, 0, 0〉
e2 = j = 〈0, 1, 0〉
e3 = k = 〈0, 0, 1〉

(1.11)

For example,
〈1, 3,−2〉 = 1i + 3j− 2k (1.12)
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is decomposed into its components. As another example,

〈4, 3〉 = 4i + 3j (1.13)

and this can be pictured as follows:

4i

3j

〈4, 3〉

x

y

�

1.3 The Dot and Cross Products

1.3.1 The Dot Product

Definition 1.16 The dot product of two vectors x = 〈x1, x2, . . . , xn〉 and y =
〈y1, y2, . . . , yn〉 in Rn is defined by

x · y = 〈x1, x2, . . . , xn〉 · 〈y1, y2, . . . , yn〉 = x1y1 + x2y2 + · · ·+ xnyn (1.14)

or, more concisely, using summation notation,

x · y =

n∑
i=1

xiyi �

Remark 1.17 We may dot in various ways, in practice, such as dotting the row of
a matrix A with a column of a matrix B. Thus, we allow

x · y = 〈x1, x2, . . . , xn〉 ·


y1
y2
...
yn

 =
n∑

i=1

xiyi �
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Example 1.18 Consider the vectors x = 〈1, 2,−5〉 and y = 〈−3, 2, 4〉 in R3. Their
dot product is

x · y = 〈1, 2,−5〉 · 〈−3, 2, 4〉
= 1 · (−3) + 2 · 2 + (−5) · 4
= −19

�

Definition 1.19 The length (or magnitude or norm) of a vector x in Rn will be
defined as the square root of the dot product of x with itself:

‖x‖ =
√

x · x (1.15)

Thus,

‖x‖ =

√√√√ n∑
i=1

x2i

and therefore

‖x‖2 =
n∑

i=1

x2i = x · x �

Example 1.20 The magnitude of the vector x = 〈4, 1〉 ∈ R2 is

‖〈4, 1〉‖ =
√

42 + 12 =
√

17 �

Proposition 1.21 (Algebraic Properties of the Dot Product) Let x, y, z be
vectors in Rn and let c be a real number. Then,

(1) x · x = |x|2

(2) |cx| = |c||x|
(3) x · y = y · x (commutativity)

(4) x · (y + z) = x · y + x · z (distributivity over addition)

(5) (cx) · y = c(x · y) = x · (cy) (associativity and commutativity of scalar multi-
plication and dot multiplication)

(6) 0 · x = 0

Proof : A worthy exercise. �
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In two and three dimensions, the dot product has a very geometric interpretation:

Proposition 1.22 Let x = 〈x1, y1, z1〉 and let y = 〈x2, y2, z2〉 be two vectors in R3,
and let θ be the angle between them. Then,

x · y = ‖x‖‖y‖ cos θ (1.16)

Proof : Consider the triangle formed by the vectors x, y and y − x.

y − x

x

yθ

x

y

By the Law of Cosines

‖y − x‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ

Using the fact that |x|2 = x · x, we can rewrite the above as

(y − x) · (y − x) = x · x + y · y − 2‖x‖‖y‖ cos θ

Distributing on the left and simplifying, we get

���y · y − 2x · y +���x · x = ���x · x +���y · y − 2‖x‖‖y‖

That is,

��−2x · y = ��−2‖x‖‖y‖ �

Remark 1.23 We observe that if we were clever, we could generalize this to Rn by
simply defining the angle θ between x and y in Rn to be

θ := cos−1
(

x · y

‖x‖‖y‖

)
which is, of course, what the clever people have already done. �
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1.3.2 Cross Product

Note that this section requires knowledge of determinants, which is to be found below,
in the section on matrices.

The cross product is a vector product, meaning that multiplying two vectors this way
results in another vector (this is why the dot product is sometimes called the scalar
product, to distinguish it from this vector product). The cross product is only defined
in 3 dimensions, i.e. only on R3.1

Let u = 〈a, b, c〉 and v = 〈d, e, f〉 be two vectors in R3. We define their cross product
to be the vector gotten by computing the following determinant:

u× v = 〈a, b, c〉 × 〈d, e, f〉 =

∣∣∣∣∣∣
i j k
a b c
d e f

∣∣∣∣∣∣
= i

∣∣∣∣b c
e f

∣∣∣∣− j

∣∣∣∣a c
d f

∣∣∣∣+ k

∣∣∣∣a b
d e

∣∣∣∣
(1.17)

Carrying out this computation to its awful end, we get

u× v = (bf − ce)i− (af − cd)j + (ae− bd)k = 〈bf − ce, cd− af, ae− bd〉

But it is easier to remember the equation (1.17) in terms of determinants and just
perform the rest of the computation by hand in particular cases.

Example 1.24 Let u = 〈1, 2,−2〉 and v = 〈−8, 5, 4〉. Then,

u× v = 〈1, 2,−2〉 × 〈−8, 5, 4〉

=

∣∣∣∣∣∣
i j k
1 2 −2
−8 5 4

∣∣∣∣∣∣
= i

∣∣∣∣2 −2
5 4

∣∣∣∣− k

∣∣∣∣ 1 −2
−8 4

∣∣∣∣+ j

∣∣∣∣ 1 2
−8 5

∣∣∣∣
= (8 + 10)i− (4− 16)j + (5 + 16)k

= 18i + 12j + 21k or 〈18, 12, 21〉

Example 1.25 Let us compute i× j:

i× j =

∣∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣∣ = i

∣∣∣∣0 0
1 0

∣∣∣∣− j

∣∣∣∣1 0
0 0

∣∣∣∣+

∣∣∣∣1 0
0 1

∣∣∣∣ = 0i− 0j + 1k = k

1It generalizes to other dimensions only once we switch to the wedge product (or exterior
product) in multilinear algebra. Moving past the algebra we are led to a differential type of wedge
product in the apparatus of differential forms. For further reading on this, see Knapp [2] and
Gallier [1] for the algebra, and Munkres [3] for the calculus side.
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By similar calculations, which we leave to you, we also have the relations j × k = i
and k× i = j:

i× j = k

k× i = j

j× k = i

(1.18)

Note that the vectors i, j, k are cyclically permuted:

i

j k

in slots of the equation × =

(1.19)

�

Proposition 1.26 (Algebraic Properties of the Cross Product) Let x, y, z
be vectors in R3 and let c be a real number. Then,

(1) x× y = −y × x (anti-commutativity)

(2)
x× (y + z) = x× y + x× z

(x + y)× z = x× z + y × z
(distributivity over addition)

(3) (cx)× y = c(x× y) = x× (cy) (associativity of scalar multiplication and
cross multiplication)

Proof : Let us prove (1), and leave the rest as easy exercises. Let x = 〈a, b, c〉 and
y = 〈d, e, f〉. Then,

y× x =

∣∣∣∣∣∣
i j k
d e f
a b c

∣∣∣∣∣∣ = i

∣∣∣∣e f
b c

∣∣∣∣− j

∣∣∣∣d f
a c

∣∣∣∣+ ∣∣∣∣d e
a b

∣∣∣∣ = (ce− bf)i− (cd− af)j + (bd− ae)k

However, according to the calculation (1.17) above,

x× y = (bf − ce)i− (af − cd)j + (ae− bd)k = −y × x �

Proposition 1.27 For any vectors u, v in R3 we have the identity

‖u× v‖ = ‖u‖‖v‖ sin θ (1.20)

and consequently

u× v =
(
‖u‖‖v‖ sin θ

)
n (1.21)

where θ is the angle between the vectors and n = u×v
‖u×v‖ is the unit vector in the

direction of u × v, determined by the right-hand rule, illustrated in the following
diagram,2

2Which I got from the Wikipedia page on the cross product, http://en.wikipedia.org/wiki/
Cross_product.
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Proof : Let u = 〈a, b, c〉 and v = 〈d, e, f〉. By the calculation (1.17) we have that
u× v = 〈bf − ce, cd− af, ae− bd〉, and consequently

‖u‖2‖v‖2 sin2 θ = ‖u‖2‖v‖2(1− cos2 θ)

= ‖u‖2‖v‖2 − ‖u‖2‖v‖2 cos2 θ

= ‖u‖2‖v‖2 − (u · v)2

= (a2 + b2 + c2)(d2 + e2 + f2)− (ad+ be+ cf)2

= (a2d2 + b2e2 + c2f2 + b2f2 + c2e2 + c2d2 + a2f2 + a2e2 + b2d2)

−(a2d2 + b2e2 + c2f2 + 2bcef + 2acdf + 2abde)

=
(
b2f2 − 2bcef + c2e2

)
+
(
c2d2 − 2acdf + a2f2

)
+
(
a2e2 − 2abde+ b2d2

)
+(a2d2 + b2e2 + c2f2)− (a2d2 + b2e2 + c2f2)

= (bf − ce)2 + (cd− af)2 + (ae− bd)2

= 〈bf − ce, cd− af, ae− bd〉 · 〈bf − ce, cd− af, ae− bd〉
= ‖u× v‖2

Taking the square root gives the result. �
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1.3.3 Interaction Between the Dot and Cross Products

Proposition 1.28 Let a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, c = 〈c1, c2, c3〉 be vectors in
R3. Then,

(1)
a× (b× c) = (a · c)b− (a · b)c

(a× b)× c = (a · c)b− (c · b)a
(vector triple product)

(2) (a×b) ·c = (c×a) ·b = (b×c) ·a =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a ·(b×c) = c ·(a×b) =

b · (c× a) (scalar triple product)

(3) (a× b)× c + (c× a)× b + (b× c)× a = 0 (Jacobi identity)

Proof : (1) This is a direct computation:

a× (b× c) =

∣∣∣∣∣∣∣∣
i j k
a1 a2 a3∣∣∣∣b2 b3

c2 c3

∣∣∣∣ − ∣∣∣∣b1 b3
c1 c3

∣∣∣∣ ∣∣∣∣b1 b2
c1 c2

∣∣∣∣
∣∣∣∣∣∣∣∣

=

〈
a2

∣∣∣∣b1 b2
c1 c2

∣∣∣∣+ a3

∣∣∣∣b1 b3
c1 c3

∣∣∣∣ ,
a3

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a1 ∣∣∣∣b1 b2
c1 c2

∣∣∣∣ ,
−a1

∣∣∣∣b1 b3
c1 c3

∣∣∣∣− a2 ∣∣∣∣b2 b3
c2 c3

∣∣∣∣ 〉
=

〈
a2(b1c2 − b2c1) + a3(b1c3 − b3c1),

a3(b2c3 − b3c2)− a1(b1c2 − b2c1),
−a1(b1c3 − b3c1)− a2(b2c3 − b3c2)

〉
=

〈
a2b1c2 − a2b2c1 + a3b1c3 − a3b3c1,

a3b2c3 − a3b3c2 − a1b1c2 + a1b2c1,

−a1b1c3 + a1b3c1 − a2b2c3 + a2b3c2
〉

+〈a1b1c1, a2b2c2, a3b3c3〉 − 〈a1b1c1, a2b2c2, a3b3c3〉
=

〈
(a2c2 + a3c3)b1 − (a2b2 + a3b3)c1,

(a1c1 + a3c3)b2 − (a1b1 + a3b3)c2,

(a1c1 + a2c2)b3 − (a1b1 + a2b2)c3
〉

+〈a1b1c1, a2b2c2, a3b3c3〉 − 〈a1b1c1, a2b2c2, a3b3c3〉

=
〈

(a1c1 + a2c2 + a3c3)b1 − (a1b1 + a2b2 + a3b3)c1,

(a1c1 + a2c2 + a3c3)b2 − (a1b1 + a2b2 + a3b3)c2,

(a1c1 + a2c2 + a3c3)b3 − (a1b1 + a2b2 + a3b3)c3

〉
14



=
〈
(a · c)b1 − (a · b)c1, (a · c)b2 − (a · b)c2, (a · c)b3 − (a · b)c3

〉
= (a · c)b− (a · b)c

The other expression in (1) follows from this one and the anti-commutativity of the
cross product: −(a× b)× c = c× (a× b) = (c · b)a− (c · a)b so that (a× b)× c =
(a · c)b− (c · b)a.

For (2), we simply compute, using some basic facts about determinants:

(a× b) · c =

〈∣∣∣∣a2 a3
b2 b3

∣∣∣∣ ,− ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ , ∣∣∣∣a1 a2
b1 b2

∣∣∣∣〉 · 〈c1, c2, c3〉

=

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ c1 − ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ c2 +

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ c3
=

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = (c× a) · b = b · (c× a)

=

∣∣∣∣∣∣
b1 b2 b3
c1 c2 c3
a1 a2 a3

∣∣∣∣∣∣ = (b× c) · a = a · (b× c)

= c · (a× b)

since each of the other two determinants is obtained from the first by 2 row inter-
changes, which are equal to (−1)2 times the first.

The Jacobi identity (3) follows from the vector triple product: (a×b)× c + (c×a)×
b + (b× c)× a = (a · c)b− (a · b)c + (c · b)a− (c · a)b + (b · a)c− (b · c)a = 0. �
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1.3.4 Geometric Properties of the Dot and Cross Products

The formulas

u · v = ‖u‖‖v‖ cos θ (1.22)

‖u× v‖ = ‖u‖‖v‖ sin θ (1.23)

for all vectors u and v in R3 forming an acute angle θ, already contain significant
geometric information. The purely algebraic definition of u · v = u1v1 + u2v2 + u3v3,
which a priori doesn’t say anything about angles and orthogonality, turns out to in
fact give precisely that information. Indeed, we can use purely algebraic information
about u and v, namely their magnitudes and dot product, to gain the important
geometric information about the acute angle they form:

θ = cos−1
(

u · v

‖u‖‖v‖

)
(1.24)

(provided, of course, that neither vector is the zero vector 0 = 〈0, 0, 0〉, else we’d be
dividing by 0).

u

vθ

x

y

This fact motivates the following definition. We say two vectors u and v are orthog-
onal or perpendicular if u · v = 0, and we denote this by

u ⊥ v (1.25)

From equation (1.22) we immediately get that

u ⊥ v ⇐⇒ cos θ = 0 ⇐⇒ θ =
π

2
(1.26)

Next, consider the projection of the vector u onto the vector v, that is, drop a

16



perpendicular from the arrowhead of u onto the line containing v,

projv u

u

vθ

x

y

Observe that the length of the projection is clearly

compv u = ‖ projv u‖ = ‖u‖ cos θ = ‖u‖‖v‖
‖v‖

cos θ =
u · v

‖v‖
(1.27)

Therefore, if we give it a direction, namely the unit direction v
‖v‖ of v, we get

projv u = (‖u‖ cos θ)
v

‖v‖
=

u · v

‖v‖2
v (1.28)

Next, consider the parallelogram formed by the vectors u and v:

h

u

vθ

x

y

We know that its area is the length of its base times its height,

A = bh

Now, b = |v| and h = |u| sin θ, so by equation

A = bh = ‖v‖‖u‖ sin θ = ‖u× v‖ (1.29)

i.e. the area of the parallelogram determined by u and v is the length of their cross
product!

17



Now consider a parallelepiped spanned by three vectors u, v, w, the 3-dimensional
analog of the parallelogram, a rectangular solid whose opposite sides are all parallel.

u× v

h

w

u

v

θ

The volume is the area of the parallelogram spanned by u and v times the height h,

V = Ah = ‖u× v‖h

But note that h is the length of the projection of w onto u× v,

h = ‖ compu×v w‖ =
|w · (u× v)|
‖u× v‖

=

∣∣∣∣w ·
(

u× v

‖u× v‖

)∣∣∣∣ = ‖w‖| cos θ|

Hence,

V = Ah = ‖u× v‖|w · (u× v)|
‖u× v‖

= |(u× v) · w| (1.30)

I.e., the volume V is equal to the absolute value of the scalar triple product of u, v
and w, which, by our formulas for the scalar triple product from Proposition 1.28,
can be computed using the determinant: if u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉 and
w = 〈w1, w2, w3〉, then

V = |(u× v) · w| = absolute value of

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ (1.31)
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2 Appendix: The Relationship Between Points and Vectors—
the Displacement Vector

Let O = (0, . . . , 0) ∈ Rn be the origin, thought of as a point. Given any two points
P = (x1, . . . , xn) and Q = (y1, . . . , yn) in Rn, define associated vectors, which we
denote

−−→
OP := 〈x1, . . . , xn〉,

−−→
OQ := 〈y1, . . . , yn〉

Then, the displacement vector from P to Q is defined as

−−→
PQ =

−−→
OQ−

−−→
OP

= 〈y1, . . . , yn〉 − 〈x1, . . . , xn〉
= 〈y1 − x1, . . . , yn − xn〉

(2.1)

We picture the displacement vector
−−→
PQ as emanating from the point P and ending

in an arrow at the point Q (even though it always, strictly speaking, emanates from
the origin to its endpoint).

Example 2.1 Let us look at the case of R2. Suppose P = (1, 2) and Q = (5, 3).
Then, −−→

PQ =
−−→
OQ−

−−→
OP = 〈5, 3〉 − 〈1, 2〉 = 〈5− 1, 3− 2〉 = 〈4, 1〉 (2.2)

and the picture is this:

O

−−→
PQ = 〈4, 1〉

P = (1, 2)

Q = (5, 3)

x

y

Remark 2.2 In fact,
−−→
PQ should be pictured as emanating from the origin, but we

want to think of
−−→
PQ as emanating from P . We should, then, if we were being rigorous,

think of
−−→
PQ as lying in a copy of Rn sitting above our position space Rn at the point P ,

that is we should think of
−−→
PQ as lying in the set {P}×Rn = {(P,x)|x = 〈x1, . . . , xn〉},

and thus −−→
PQ = (P,

−−→
OQ−

−−→
OP )

For example, if P = (1, 2) and Q = (5, 3), then

−−→
PQ =

(
(1, 2), 〈4, 1〉

)
We will not nit-pick here, and we will simply conflate points and vectors in the strict
sense, but we will picture vectors as emanating from points in the underlying position
space. �
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Now suppose we are considering not two points P and Q, but two vectors v and w.
Then we can consider the displacement vector from v to w. This is, in fact w−v,
which is simply due to the fact that w = v + (w − v):

w − v

v

w

x

y

This of course harmonizes with our previous definition,
−−→
PQ =

−−→
OQ−

−−→
OP . We subtract

our starting position vector from our ending position vector in both cases.

The formula for the distance between two points P = (x1, . . . , xn) and Q =
(y1, . . . , yn) is the formula gotten from a generalized Pythagorean theorem,

d(P,Q) = d
(

(x1, . . . , xn), (y1, . . . , yn)
)

=

√√√√ n∑
i=1

(yi − xi)2 (2.3)

In the cases n = 2 and n = 3, this is literally the Pythagorean theorem. For n > 3
it’s simply a definition which in a way takes the Pythagorean theorem as an axiom.

What is the relationship between the distance formula and the length of a vector? It

is that the length of the displacement vector
−−→
PQ is precisely the distance between P

and Q:

‖
−−→
PQ‖ =

√
−−→
PQ ·−−→PQ

=

√
(
−→
Q −

−→
P ) · (

−→
Q −

−→
P )

=
√
〈y1 − x1, . . . , yn − xn〉 · 〈y1 − x1, . . . , yn − xn〉

=

√√√√ n∑
i=1

(yi − xi)2

= d(P,Q)
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